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HARMONIC OSCIL~TIONS OF AN ELECTROE~STIC SKI-INFINITE MEDIUM, CAUSED 
BY A PERIODIC ACTION IN SPACE* 

V.A. BABESHKO and A.B. FINKEL'SHTBIN 

A two-dimensional boundary value problem of the harmonic oscillations of 
a semi-infinite piezoelectric medium with one flat boundary on which a 
normal displacement and an electrical field potential are given period- 
ically,isconsidered. This problem occurs in the design of a number of 
surface acoustic wave devices /l/. Such devices consist of a piezo- 
electric crystal of rectangular planform and cross-section on one of 
whose faces a periodic system of rectangular electrodes is superimposed. 
The presence of the periodically arranged electrodes on the boundary 
exerts an influence on the surface acoustic waves by two means: 1) 
electrical shorting of the surface , and 2) mechanical action on the 
oscillating medium because of electrode inertia. The contribution of 
the mechanical action here grows as the operating frequencies of the 
device increase. 

The boundary value problem reduces to a system of periodic convolution 
equations. The properties of the kernels of theintegraleguations are 
established. A theorem is presented that enables one to transfer to the 
solution of systems of algebraic equations. A solution is constructed 
for the wave fields at any point of the medium. An example is considered 
for calculating the wave fields on the boundary of the medium. 

1. On the surface of an electroelastic half-space x,< 0 adjoining a vacuum, let a 
system ofparallelelectrodes, periodic in xl with period 21 and of width 2a be arranged 
(figure). within the framework of the electrostatic approximation /2/, the complete system 
of differential equations has the form /I/ 

Eqs.(l.l) hold in the domain xs< 0. For ss> 0 the electrical potential is described 
by the tiplace equation Am = 0 /l/. 

The boundary conditions are mixed. Conditions on the displacements must be posed on 
that part of the surface where the electrodes are arranged and the potential must be given, 
while conditions of no mechanical stresses and continuity of the normal component of the 
induction vector are given on the free part /3/. Because of the periodicity of the problem 
it is sufficient to examine one period; the conditions are repeated in the rest. Let the 
displacements and potential depend on time according to the law exp (-2wt) (we henceforth 
omit this factor). Assuming the tangential stresses under the electrodes to be small compared 
with the normal stresses , the following boundary conditions should be satisfied for the two- 
dimensional problem 

zQ = 0, x1 E I-a, al, T,, = T,, = 0, us = N., (4, 9, = N, 

z3 = 0, 2% FL---a, al, T,, = T,, = T,, = 0, OS-D," = 0 

(1.2) 

where osb(xr, xs)is the normal component of the induction in a vacuum. 
Let u,v,m denote the displacements utfi = *,2,3) in a dimensionless 5, y, z coordinate 

system where X1 = Mn, x* =lyfn,x, = lzfn. To reduce the boundary value problem to a system 
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of integral equations, Eqs.(l.l) with the boundary conditions 

z = 0, x E f--n, nl, T,, = T,, = 0, T,, = q1 (x), D, - D,* = q2 (.z) (1.3) 
are considered. 

Here q1 (x) and % (x) are finite functions equal to zero for xc [-a, al, a = anll. 
The boundary value problem (1.1) with the boundary conditions (1.3) is reduced to a 

system of two pe&dic convolution equations on a segmknt /4/ 

! R(z - E) q(E)dE= f(s), ZE [- a,a] 
--a 

cc 

by representing all functions in the form of their Fourier series 
problems #at occur for each component. 

The functions Kij(u) have the properties: 
1) Kii(u)- are even and Klz(u) = K,,(u)- are odd functions; 

2) Kjj (u) = Cii2 I U 1-l [I + 0 ( ) U I-“)1 (I U 1 -> M), i = 1, 2; 
3) K,, (u) = K,, (u) = Cu-’ [I + 0 (u-~)I (u + _t m). 

(1.4) 

and later solving the 

Moreover, the functions K,j(u)(i, j = 1, 2) are fractions with the common even denominator 
A (u), i.e., Kii (u) = Kii* (u)lA (u). . ., The functionA(u)has two real zeros 15. The following 
approximations hold (P,.(u) is a polynomial in even powers of L) 

A (u) = P," (u) = (u" - c*) P:--, (u) 
Kii* (u) = P,ii (u), i = 1, 2; K,,* (u) = K,,* 

A basis for the introduction of such an approximation 
number of wave modes, starting with the lowest, that occur 
the mechanical and electrical effects vary harmonically. 

The functions Kij (u) can be represented in the form 

(u) = IT-1 (u) 

is to take account of a finite 
in an electroacoustic medium as 

Kii(u)=$ fj (u--2111) @(u- ,j,]-‘=$ + 
J-1 

!u) pl’_, PZ_. (u) 

PLA(U) ’ Kn (4 = K,, (4 = P,ao ; cL-l=L Cr.=-{ 

(1.5) 

Here &(j=i,...,L-2) are zeros of the polynomial Pt_-2(u);zi"* are the zeros of the 

polynomials PLii (u), and A”, AA are coefficients of the highest powers of the corresponding 
polynomials, i = 1, 2. 

2. Let us consider the system of integral Eqs.Cl.4) in which Kir(n) are written in 
the form (1.5). 

Theorem. For a function of the form CD (z) = K (z) exp (izt) for which I t I < 2x, ( K (z) 1 - 
c 1 z j-1 as Jzl-+wM;K(z) has the poles 51 (i = 1, . . .I L) the representation 

2 O(n)=- ~Res(~(z)ctgnz)i.=~,+~I"i iResQ(z)b_it 
n-m j=l 1=1 

holds. 
The theorem 

the poles of the 
is provc+d by the same scheme as Theorem 1.4.1 in /5/ except the presence of 
function K(z)must be taken into account by applying theorems on residues. 

System (1.4) with kernels in which the functions Ktj(u) have the form (1.5) is reduced 
to the system 

2n (All/AA) q1 (5) + I,I (5) + 221 (I) = fi (4, 5 E [--a, al (2.1) 



by using 

points 
The 

be given 
of this series. The 
consequently, we set 

the theorem, where Djk’ areresidues of the function ctg ZUP~!~ (u)/P~ (u) taken at the 

u = 51, and Sjk' are residues of the function input_, (~)iPt (u), k, I = 1, 2. 
function fi (z) in the system (2.1) is the normal electrode displacement. Let it 
by a Fourier series; we solve system (2.1) for the arbitrary component F, exp (i~z) 

function fa (4 
_ - _ _... 

is the magnitude of the potential on the electrode, 
it equal to the constant F,. We solve system (2.1) with the right side 

fi (4 = F, exp (iv), f2 (4 = F, (2.2) 
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The solution of system (2.1) with the right side (2.2) is sought in the form 

(2.3) 

where A[, Bi, Xk(i) (i = 1, 2; k = 1, . . .( N) are unknown coefficients, pr (k= 1, . . . . N) are also 
unknown quantities the number and values of which are determined du+.n'g the solution. After 
substituting (2.3) into (2.1) with the right side (2,.2) and evaluating the integrals in each 
equation of (2.11, components appear that are independent of x, components with the factors 
exp (iv), with the faCtOrE eXp(ipkl), and also with the factors exp(it;js) (j = 1, . . . . L). 
Because of the linear independence of the components with the mentioned factors, the system 
of integral Eqs.(%.l) uncouples into a number of linear algebraic systems 

(2.4) 

(2.5) 

M(‘).X(” + M’“‘.x’*‘=MP.(A1, A,, B,, B# (2.6) 
X"'=(X~',...,X$'), i=1,2 

HereM is a (2 X 2) matrix whose elements depend on the parameter ?l, MC'), M(') are 

(N X N) matrices, and w is a (2L x 4) matrix. 
Here A,,AI and B,,Ba are determined from (2.4). For a non-zero solution of system 

(2.5) it is necessary to satisfy the condition 

1 M bk) 1 = 0 (2.7) 

Eq.(2.7) is a polynomial of degree 2L, consequently, there are 2L roots Pk for which the 
non-zero pairs xk", xk'*' exist that satisfy system (2.5). Therefore, N = 2L in (2.3). 
It is possible to express xk"' = @)kxk(*) from (2.5). Then the unknowns Xk(') are determined 
from the inhomogeneous system (2.6) of N linear algebraic equations in the N unknowns xk", 
(k = 1, . . ., 2.L = N), and functionsofthemechanicalstress Q~(z). andthe chargedensity q%(x) are 
constructedbymeansof (2.3). Formulas (2.1)-(2.4) in/4/enable thedisplacements u(z,z), u(z,z), 
w(z,z) andthepotential cp (2,~) tobedetermined for known ql(z) and q,(z) in the domain 

- w,<3~~,2~0. 

3. As an illustration, calculations were made for the displacements and the potential 
on the boundary of an electroelastic quartz crystal half-plane with a periodic system of 
electrodes. The half-plane boundary belongs to the ST-cut quartz surface. The computations 
were performed for the simplest approximation L= 2 for the following parameters o= 20~~ MHz 
z = 0,1579 x io-' m, q = 1,F, = 0,194 x 1O-1l m, FI = 0. i.e., it is assumed that the lattice-equals 
the Rayleigh wavelength on the free ST-cut quartz surface and all the electrodes are grounded. 
The dimensionless coordinate a of the electrode edge was varied in steps of 0,lbetween 0,l 
and 3,l and the functions w&O) and 9 (2, 0) were evaluated for each.fixed a. It was 
established that the amplitudes of the displacement U&O) and the potential cp(z.0) reach 
the maximum values for a= 0.6. One should start from this quantity in designing such devices 
as resonators where it is necessary to reach the maximum amplitudesata given frequency. 

4. The method elucidated for solving a periodic problem for an electroelastic half-plane 
also permits the solution of a more general problem without the assumption that the shear 
stress under the electrodes is small compared with the normal stresses. The two-dimensional 
boundary value problem is h&e reduced to a system of three integral equations of the form 
(1.4), system (2.1) is correspondingly more complicated , and the number and dimensionality 
of the algebraic systems (2.4)-(2.6) is also increased. 
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APPLICATION OF STRUCTURAL REPRESENTATIONS TO THE SOLUTION OF 
BOUNDARY-VALUE PROBLEMS OF IDEAL PLASTICITY* 

E.B. NISNEVICH 

The method of successive approximations is proposed for solving plane 
problems of the theory of ideal plasticity, based on structural re- 
presentations. By using this method the state of stress is determined 
in an infinite plane with a circular hole for an arbitrary change in the 
forces applied at infinity. It is shown that for a certain constraint 
on the asymmetry of the loads, the solution of the problem considered is 
independent of the loading trajectory. When the mentioned constraint is 
violated, the plasticity domain will be different depending on the history 
of the load change. 

1. Th e stresses caused by inelastic strain rij(i,j = x,y,z) can be represented in the 
plane case /l/ as stresses due to wedgelike dislocations (WD), distributed (inserted) over the 
plasticity domain (PD) with density p(x, y) and over its boundary L with density pr.(l). The 
magnitudes of the densities under plane strain have the form 

aar azr 
Pb !I)= -$ + +- 2 s+ vhr: 

PLW = 

(1.1) 

(ri = rii,Y is Poisson's ratio, and n is the external normal to the boundary of the plasticity 
domain). 

In the plane state of stress the values of the densities are obtained from the expression 
presented if the last terms dependent on the strain rz are discarded. 

On the other hand, if the state of stress of a body is known, it completely determines 
those structural imperfections that were formed therein at the time under consideration. The 
density of these imperfections (i.e., the WD) in the PD and on its boundary is determined by 
the expressions /l/ 

P(X,Y) = - Qp- A(% + q,) 

pL-* 
[ 

a (3% + sv) 
an 1 L 

The square brackets here denote discontinuities of the quantities therein on the in- 
elastic strain domain boundary; it is calculated for the passage from points within the domain 
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